
 

 

CS103A Handout 08S 

Winter 2020  

Solutions for Week Eight 

Concept Checks 

i. What is a language? (I.e., what “type” does it have—is it a string? A function?) 

A language is a (possibly infinite) set of strings. For a given alphabet Σ, a language is a subset of Σ*. 

ii. Name at least two differences between DFAs and NFAs. 

NFAs are non-deterministic, meaning they can have multiple transitions for the same (state, symbol) pair. They 

can also have zero transitions defined for a given (state, symbol) pair. Finally, they can transition on ε (the emp-

ty string) as well as the symbols of Σ. 

You could also observe that while a DFA accepts a string if it ends in an accepting state, an NFA accepts a string 

if any computation ends in an accepting state. 

iii. Give three different definitions for what a regular language is. 

A regular language is a language recognized by a DFA; a language recognized by an NFA; or a language for 

which there is a regular expression. 

iv. Name at least two closure properties of regular languages. 

The regular languages are closed under complementation, union, intersection, concatenation, and Kleene star. 
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Designing Regular Expressions 

Below are a list of alphabets Σ and languages over those alphabets. For each language, write a regular expres-

sion for that language. 

i. Let Σ = {a, b, c} and let L = { w ∈ Σ* | w ends in cab }. Write a regular expression for L. 

One option is 

Σ*cab 

This matches any string that begins with some number of characters of any type, then ends with cab. Isn't that 

easier than the NFA? 

ii. Let Σ = {a, b} and let L = { w ∈ Σ* | w ≠ ε and the first and last character of w are the same }. Write a 

regular expression for L. 

Here's one option: 

a ∪ b ∪ a Σ*a ∪ b Σ*b 

This says “either match the single characters a and b, or match something that starts and ends with a with any 

number of characters in the middle, or match something that starts and ends with b with any number of charac-

ters in the middle.” 

You can condense this a bit using the ? operator: 

a(Σ*a)? ∪ b(Σ*b)? 

This means “if you see an a, either you're done, or you're going to see some number of characters and then an-

other a” (and the same for b.) 

iii. Let Σ = {a, b} and let L = { w ∈ Σ* | w contains two b's separated by exactly five characters }. Write a 

regular expression for L. 

Here's one option: 

Σ*b Σ5b Σ* 

This means “match any number of characters, then read a b, five characters, and another b, then as much as 

you'd like after that.” 
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iv. Let Σ = {a, b} and let L = { w ∈ Σ* | w is a nonempty string whose characters alternate between a's and 

b's }. Write a regular expression for L. 

One possibility is 

a(ba)*b? ∪ b(ab)*a? 

If the characters alternate, they either start with an a or they start with a b. If they begin with a, then we'll then 

have some number of copies of the string ba, optionally ending with a final b. If they begin with a b, then we'll 

then have some number of copies of the string ab, optionally ending with a final a. 

v. Let Σ = {a, b, c} and let L = { w ∈ Σ* | w contains every character in Σ exactly once }. Write a regular 

expression for L. 

Alas, there's no easy way to write this one because those characters can appear in any order. 

Here's one option: 

abc ∪ acb ∪ bac ∪ bca ∪ cab ∪ cba 

Why we asked this question: This question was designed to show off some common patterns and techniques in 

the design of regular expressions. Part (i) shows off how regexes match patterns at the beginning or end of a 

string (namely, by inserting Σ* to cover prefixes or suffixes.) Part (ii) explores how regular expressions keep 

track of information like which character was used; namely, by repeating different patterns in different combina-

tions. Part (iii) was designed to get you to see how a language looks when expressed in different formats, and 

this problem shows that regexes nicely capture this particular language. Part (iv) shows off an edge case where-

by you sometimes have to insert a suffix to a regex to capture the idea that a pattern might end abruptly. Finally, 

part (v) of this problem was there to show that regexes do have some weaknesses, namely the inability to re-

member what they've seen without just exhaustively listing cases. 
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State Elimination 

Using the state-elimination algorithm, convert this NFA into a regular expression. (You could just directly de-

sign a regular expression for this language, but we want you to specifically use the state elimination algorithm). 

We begin by introducing a new start and accept state with the appropriate new ε-transitions: 

 

Let's eliminate state q₃ first. The only state with a transition into q₃ is q₂, and the only state q₂ has a transition 

into is qf. Therefore, we'll add a direct link from q₃ to qf labeled with the regular expression Σε (Σ for the entry 

into q₃ and ε for the exit from q₃ to qf). This yields this setup: 

 

Eliminating states q₂ and q₁, in that order, gives this configuration: 

 

Now, we eliminate q₀. We can enter q₀ from qs, stay around using the Σ self-loop, then leave by following the 

aΣΣε transition. This gives the following: 

 

The final regex is εΣ*aΣΣε, which easily simplifies to Σ*aΣΣ. This makes sense – it means that the regex 

matches any number of characters, then something that ends with a followed by any two characters. 

Why we asked this question: The beauty of the automata transformations we've seen so far is that it lets us 

study the same class of objects – the regular languages – using one of three totally different lenses. The con-

structions are a bit tricky, though, and to help you get a handle for how they work, we wanted you to practice 

working through them on a few special cases. This particular case, in our opinion, wasn't too tough of a sample 

input. 
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Closure Properties 

Prove that the regular languages are closed under subtraction. That is, prove that if L₁ and L₂ are regular lan-

guages over some alphabet Σ, then the language L₁ – L₂ is also regular. 

Proof: Let L₁ and L₂ be regular languages over Σ. Notice that the set L₁ – L₂ can equivalently be expressed as 

{ w ∈ Σ* | w ∈ L₁ ∧ w ∉ L₂ }. Since in this set we assume that w ∈ Σ*, the condition that w ∉ L₂ is equivalent to 

the condition that w ∈ 𝐿₂. Consequently, we see that 

L₁ – L₂ = { w ∈ Σ* | w ∈ L₁ ∧ w ∈ 𝐿₂ }. 

Notice that this is in turn equivalent to the set L₁ ∩ 𝐿₂. The regular languages are closed under intersection and 

complementation, so this language is regular. Therefore, L₁ – L₂ is regular, as required. ■ 

Why we asked this question: Our exploration of the closure properties of the regular languages led us to dis-

cover the regular expressions, a totally new way of thinking about the regular languages that’s completely di-

vorced from the underlying machine model. This exercise was designed to get you thinking about these closure 

properties and how you might come up with your own. 
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The Myhill-Nerode Theorem 

i. What is the formal definition of the statement x ≢L y? Explain it in plain English. Give an example of 

two strings x and y along with a language L where x ≢L y holds. 

The formal definition of x ≢L y is 

x ≢L y     if     ∃w ∈ Σ*. (xw ∈ L ↔ yw ∉ L). 

In plain English, this means there's a string you can tack onto the end of both x and y such that exactly one of xw 

and yw will be in L. 

As an example, the strings a and aa are distinguishable relative to {a
n
b

n
 | n ∈ ℕ}; tacking on bb makes aabb ∈ 

L and abb ∉ L. 

ii. The proof hinges on the fact that if x ≢L y, then x and y cannot end in the same state when run through 

any DFA for a language L. We sketched a proof of this in class. Explain intuitively why this is the case. 

Let x and y be strings where x ≢L y, and let w be a string that distinguishes x and y. If x and y end up in the same 

state in a DFA D for the language L, then the strings xw and yw will end up in the same state in D because once 

x and y have “collided,” reading the same characters after reading x and y will cause the DFA to follow the same 

series of transitions. If the state that xw and yw end up in is accepting, then both xw and yw are accepted even 

though one of those strings isn’t in L, and if that state is rejected the both xw and yw are rejected even though 

one of those strings is in L. Either way, we contradict the fact that D is a DFA for the language L. 

iii. Explain, intuitively, why S has to be an infinite set for this proof to work. 

The proof of the Myhill-Nerode theorem works by arguing that no matter how large of a DFA we build for a 

language L, we can always find a larger number of pairwise distinguishable strings. If we have infinitely many 

strings in S, we can always ensure that we have more strings in S than there are states in any proposed DFA for 

L. On the other hand, if S is finite, this line of reasoning only works on DFAs that have fewer than |S| states. 

iv. Does anything in the proof require that S be a subset of L? 

Nope! Not at all. We just need S to be a subset of Σ*. This is really important, actually – when you're trying to 

show that a language isn't regular, you don't need to limit your search for distinguishable strings purely to 

strings in L. You can use any strings you'd like. 

Why we asked this question: This question was designed to get you engaged with the proof of the Myhill-

Nerode theorem. The proof of the theorem is a bit tricky and nuanced, and the statement of the proof is quite 

complex. We hoped that these problems would make it easier for you to see what the theorem requires, what it 

doesn't require, and why it works. 
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Nonregular Languages Warmup 

Let Σ = {1, ≥} and consider the language L = {1
m
≥1

n
 | m, n ∈ ℕ and m ≥ n }. 

i. Give some specific examples of strings from the language L. 

Here are a few strings from L: 1≥1, 1111≥11, 111≥, 11111≥11111. 

ii. Without using the Myhill-Nerode theorem, give an intuitive justification for why L isn't regular. 

Intuitively, any DFA for this language will at some level need to keep track of how many 1's appear on the left-

hand side of the ≥ sign. If the DFA can't do that, then when it sees the 1's appearing on the right-hand side of the 

≥ sign, it won't be able to tell whether it saw more 1's the first time than the second time. However, the DFA 

only has finitely many states, so there's no way for it to exactly remember the number of 1's that it's seen. 

iii. Use the Myhill-Nerode theorem to prove that L isn't regular. You'll need to find an infinite set of strings 

that are pairwise distinguishable relative to L. As a hint, see if you can think of some strings that would have to 

be treated differently by any DFA for L, then see what happens if you gather all of them together into a set. 

Proof: Let S = {1
n
 | n ∈ ℕ}. Notice that S is infinite because it contains one string per natural number and there 

are infinitely many natural numbers. We also claim that any two distinct strings from S are distinguishable rela-

tive to L. To see this, consider any two strings 1
m
, 1

n
 ∈ S with m ≠ n. Assume without loss of generality that m > 

n. Then 1
m
 ≥ 1

m
 ∈ L, but 1

n
 ≥ 1

m
 ∉ L. Therefore, we see that 1

m
 ≢L 1

n
 . Consequently, by the Myhill-Nerode 

theorem, we know that L is not regular. ■ 

Why we asked this question: This question was designed to walk you through the thought process for showing 

that a particular language is nonregular. Part (i) asked you to take the (concise) definition of the language L and 

get a feel for what the strings in L actually look like. From there, we hoped you'd get a more concrete sense of 

what this language is. Part (ii) asked you to build an intuition for why the language isn't regular, which is a good 

idea because it forces you to think about what a DFA for the language would have to look like and what it 

would have to do. In part (iii), we asked you to formalize your reasoning so that you could say with certainty 

that the language is definitely not regular. As you work through more proofs of nonregularity going forward, we 

hope that you use some of the techniques from this problem to help guide your efforts. 
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Nonregular Languages 

Here are some more problems to help you get used to proving that certain languages aren't regular. 

i. Let Σ = {a, b} and let L = { a
n
b

m
 | n, m ∈ ℕ and n ≠ m }. Explain why this language is not the comple-

ment of the language { a
n
b

n
 | n ∈ ℕ }. 

This language is not the complement of the language { a
n
b

n
 | n ∈ ℕ } because the complement of  

{ a
n
b

n
 | n ∈ ℕ } contains strings like ba or abba that don't consist of a string of a's followed by a string of b's. 

However, the new language { a
n
b

m
 | n, m ∈ ℕ and n ≠ m } doesn't contain strings like these, so it’s not the com-

plement of { a
n
b

n
 | n ∈ ℕ }. 

ii. Let Σ = {a, b} and let L = { a
n
b

m
 | n, m ∈ ℕ and n ≠ m }. Prove that L is not regular. 

Proof: Let S = { a
n
 | n ∈ ℕ }. This set is infinite, since it contains one string per natural number. Moreover, we 

claim that all strings in S are distinguishable relative to L. To see this, consider any strings a
n
, a

m
 ∈ S where n ≠ 

m. Then a
n
b

n
 ∉ L but a

m
b

n
 ∈ L. Thus a

n
 and a

m
 are distinguishable relative to L, and since they were chosen ar-

bitrarily we conclude that any pair of strings in S are distinguishable relative to L. Therefore, by the Myhill-

Nerode theorem, L is not regular. ■ 

iii. Let Σ = {a} and let L = { w ∈ Σ* | w is a palindrome }. Prove that L is regular. 

Proof: All strings made only of a's are palindromes, since they're the same forwards and backwards. Thus L = 

Σ*, which is a regular language. ■ 

iv. Let Σ = {a, b} and let L = { w ∈ Σ* | w is a palindrome }. Prove that L is not regular. 

Proof: Let S = { a
n
 | n ∈ ℕ }. This set is infinite, since it contains one string per natural number. Moreover, we 

claim that all strings in S are distinguishable relative to L. To see this, consider any strings a
n
, a

m
 ∈ S where n ≠ 

m. Then a
n
ba

n
 ∈ L but a

m
ba

n
 ∉ L. Thus a

n
 and a

m
 are distinguishable relative to L, and since they were chosen 

arbitrarily we conclude that any pair of strings in S are distinguishable relative to L. Therefore, by the Myhill-

Nerode theorem, L is not regular. ■ 

Why we asked this question: Part (i) of this question was designed to highlight a nuance of complements of 

languages that hasn't come up in any other contexts yet. Part (ii) was then designed as a (hopefully) straightfor-

ward application of the Myhill-Nerode theorem. Part (iv) was designed as a more complex Myhill-Nerode ar-

gument because you need to make sure that you can actually distinguish the strings in the middle of the proof. 

As you saw in part (iii), the language is regular if you just have one character in your alphabet, so the proof in 

part (iv) would have to use the character b at least once. 
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Context-Free Grammars 

i. Let Σ = {a, b} and let L = { w ∈ Σ* | w has no a's or has no b's }. Write a CFG for L. 

One option is 

  S → A | B 

  A → aA | ε 

  B → bB | ε 

Any string in Σ* that has no a's or no b's (for this choice of Σ) must consist purely of a's or purely of b's. This 

grammar works by having dedicated nonterminals for each case, then choosing which case to work with. 

ii. Let Σ = {a, b} and let L = { w ∈ Σ* | w has at least one a and at least one b }. Write a CFG for L. 

One option is 

  S → XaXbX | XbXaX 

  X → aX | bX | ε 

Here, X generates any possible string. This grammar works by, at the top level, placing down an a and a b and 

filling the gaps with arbitrary strings. 

Another option is shown here: 

  S → aX | bY 

  X → aX | bZ 

  Y → aZ | bY 

  Z → aZ | bZ | ε 

Here, each nonterminal stands for a particular combination of letters that have appeared so far: S means “noth-

ing has been written yet,” X means “only a's have been written,” Y means “only b's have been written,” and Z 

means “both a and b have been written.” Each production rule then writes a single character and switches which 

nonterminal is written down. Only when we get to nonterminal Z – when both a and b have been written – are 

we allowed to expand the nonterminal out into ε and stop adding characters. 
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iii. Let Σ = {a, b} and let L = { a
n
ba

n
 | n ∈ ℕ }. Write a CFG for L. 

This one is all about finding a build ordering. We build both groups of a's simultaneously, working from the 

outside inward. Here's one grammar that does this: 

  S → aSa | b 

Notice the similarity between this grammar and the grammar for {a
n
b

n
 | n ∈ ℕ}. 

iv. Let Σ = {a, b} and let L = { a
n
b

2n
 | n ∈ ℕ }. Write a CFG for L. 

This grammar generalizes the grammar for {a
n
b

n
 | n ∈ ℕ} and works by building the a's and b's at the same 

time, working from the outside inward: 

  S → aSbb | ε 

You might have noticed that the trick of building from the outside inward is pretty common in context-free 

grammars. 

v. Let Σ = {a, b} and let L = { a
n
b

m
 | n, m ∈ ℕ and n ≤ m ≤ 5n }. Write a CFG for L. 

There are many ways we can do this. One option is shown below. It works by using the general pattern from 

before, except that whenever we place down an a, we place down between one and five b’s on the other side: 

  S → aSb | aSbb | aSbbb | aSbbbb | aSbbbbb | ε 

This works, but is a bit lengthy. Here’s another option that works by saying that whenever we put an a down on 

one side of the string, we have to put a b down on the other, followed by four optional b’s: 

  S → aSbXXXX | ε 

  X → b | ε 

Here, the nonterminal X means “either b or nothing at all.” 
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vi. Let Σ = {a, b} and let L = { a
n
b

m
 | n, m ∈ ℕ and n ≠ m }. Write a CFG for L. 

The main insight here is that any string of this form consists of a string of the form a
n
b

n
 either with some extra 

a's tacked onto the front or some extra b's tacked onto the back. We can use these insights to build this grammar: 

  S → AE | EB 

  E → aEb | ε 

  A → aA | a 

  B → bB | b 

Here, E generates all strings of the form a
n
b

n
, and A and B generate a

+
 and b

+
, respectively. 

vii. Let Σ = {a, b, c} and let L = {a
n
b

m
c

p
 | n, m, p ∈ ℕ and n = m or n = p }. Write a CFG for L. 

I love this problem because it combines everything together. There are two options here: if n = p, then we need 

to build matching a's and c's on the outside and, when we're done, we fill in the middle with b's. If n = m, then 

we build matching a's and b's and append any number of c's. The main challenge is getting everything struc-

tured appropriately. Here's one option: 

  S → XC | Y 

  X → aXb | ε 

  C → cC | ε 

  Y → aYc | B 

  B → bB | ε 

Here, X generates strings of the form a
n
b

n
. Y generates strings of the form a

n
b

m
c

n
 by generating the matching a's 

and c's on the outside and filling the middle with any number of c's. 

viii. Let Σ = {a, b} and let L = {a
n
b

n
 | n ∈ ℕ}. Write a CFG for L*, the Kleene closure of L. 

The grammar given below works by starting with a grammar for {a
n
b

n
 | n ∈ ℕ} and then letting us place down 

zero or more copies of strings from that language: 

  S → ES | ε 

  E → aEb | ε 

Notice that the start symbol S expands out into some string of E’s, and each E expands to a string of the form 

a
n
b

n
. 
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ix. Let Σ = {a, b} and let L = {a
n
b

m
 | n, m ∈ ℕ and either n=2m or m=2n }. Write a CFG for L. 

The key insight here is that there are two independent options to pick from: we either have n = 2m or we have m 

= 2n, and each option is something we can build a CFG for: 

  S → X | Y 

  X → aXbb | ε 

  Y → aaYb | ε 

x. Let Σ = {a, b} and let L = {a
n
b

n
 | n ∈ ℕ}. Write a CFG for 𝐿, the complement of L. 

The main insight here is that any string not in L must either (1) not consist of a series of a’s followed by a series 

of b’s or (2) consist of a series of a’s followed by a series of b’s, but not have the same quantity of each. Strings 

in case (1) are just the strings containing ba as a substring. Strings in case (2) are generated by the CFG from 

part (vi) of this problem. Putting those insights together gives us the following: 

  S → XbaX | AE | EB 

  X → aX | bX | ε 

  E → aEb | ε 

  A → aA | a 

  B → bB | b 

Why we asked this question: CFGs are a powerful and expressive framework for defining languages, but 

they’re much trickier to design and work with than regular expressions. This problem was designed to give you 

a ton of practice writing grammars and understanding the key techniques involved (look for a build order, store 

information in nonterminals, think recursively, etc.) Although these languages all seem to more or less be varia-

tion on a theme, as you can see, the shapes of the grammars necessary to generate those languages look quite 

different! 

 

 

 


